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In designing optimal automatic control systems the control algorithm, de-
termined by means of the methods of the theory of dynamic programming or
in accordance with the maximum principle of Pontriagin, is realized on
the basis of information on the instantaneous position of the controlled
system in the phase space [ 1,2 ].

In numerous cases it is difficult to obtain such information, since
not all the phase coordinates of the system may be accessible to measure-
ment. It is frequently impossible to measure some phase coordinates due
to absence of information on the position of the orientation system
relative to which the position of the controlled system is to be deter-
mined. Thus, for instance, on a moving ship the direction of the real
vertical of the location may be unknown relative to which the errors of
the gyroscopic pendulum have to be determined or the direction of the
geographical meridian relative to which the errors of the gyroscopic
compass have to be determined.

In view of this, it is of interest to seek indirect methods of deter-
mination of the position of a controlled system in phase space. One of
the possible methods is considered in this paper, applicable for linear
stationary and nonstationary controlled systems.

1. Steady-state systems. The equations of motion of a steady-
state controlled system can be written down in the following form:

2 LDy =2, =1 (1.1)
k=1
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In this expression, y, are the generalized coordinates of the system
and x.(t) are the external forces applied to the system. The functions
fjk(Dg are polynomials in D with constant coefficients and D = d/dt where
t 1s the time.

The set of equations (1.1) can be rewritten in the following form:

bt 12" + bjays™ + . L+ Djnyn™) = (1.2)
=, ™,y g, Ly ) (=1
Here the superscript (m,) (k= 1, ..., n) represents the order of the

highest derivative y, with respect to time which is found in (1.1). The
functions ¢, which enter into (1.2) will be linear functions of their
arguments. Assuming that the determinant

A* = by (1.3)

has a non-zero value, the set of equations (1.2) can be solved for the
highest derivatives yk('k) with the result

g, = F (™, g, Y, M Y,)

B B,
+ar a1 )+ gean(?) (G=1....n (1.4)

where F. are linear functions of their arguments and B;. are algebraic
complements of the elements b;. in the determinant (1.35. In order to

transform the set of equations (1.4) into the Cauchy form, let us in-

troduce the new variables

° . (m;~—1) . (my,—1)
2y = Y1, Z2= Y1y -+ Em,=Y1 N (1.5)

where

r=my-+-my+ ...+ my (1.6)

The new variables z;, ..., z_ represent the phase coordinates of the
system. Furthermore, let us denote the linear combinations of external
forces which enter into the right-hand sides of (1.4) by X (t), so that

J

B, B,
Xuj(t):A—fxl(t)+...+—Lrjxn(t) (65 =6y, ... ,0n) (1.7)
where
Sy =My, Og=™MmM4—+ Mgy..c,0n=T (1.8)

Equations (1.4) can now be rewritten in the form
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2y — 2 =0, ... ,éﬂn = Fi (2, 80y oy By == X {8), .. -,
g a2, 20,000y 2) = Xo (B) (1.9)

Since the functions Fj(zl, 2y, .-, Z, are linear functions of their
arguments, it follows that Equations (1.9) can be rewritten in the form

r
:'SJ ‘:*NZ Q;x2y = X] (t) (]: 1,..., r) (1[0)

ESS

We note that in (1.10)

Xp(t)=0 for p=o (=1..., n) (L.11)

The set of scalar equations (1.10) is equivalent to the matrix equa-
tion
z+4az= X (1) (1.12)
where

z=lz;], a=laxl, X@O=]X;{®] (1.13)

Iile Solution Of (1. 12) can be dete I‘ﬂl]‘ d b . )
A N ne Y operat] ona l t ) i

and bearing in mind the fact that p{ (p) — pz(0)-» z(t), we find in
accordance with (1.12) that

@ {(p)E(p) = pz(0) + E(p) (1.15)

where
olp) = pE+a (1.16)
and E denotes the unit matrix.

Denoting by ®p) the adjoint of the matrix ¢(p) and by A(p) its de-
terminant, we find from (1.15) that

«. PO (p) L O@PE (P ,
(:(p)_ A (p) Z(O) t A(P"“““) (117)
Let us denote by N(t) the original for the following representation:

P p) . ,
AN (1.18)

The function N(t) in an r x r matrix
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N (@) =|Nu®)] (1.19)

The elements of the matrix N(t) are of the form [3 ]

N B 2, S e T T 0,0)
i (1) = - (g, — D)1 [(t T ap Ay (p) sza +

’ ept , Qg +h-‘1 . ( ) -
2 .e“ {B 1 ﬁ ik p / _
i Zn (9 —1)! ¢ [( - 61)) By iy (p) Jp:":h"i'im/l cos mpt
’ 9\ 95—l @, (p) ‘

—imi{t+5, oo sin ot} (1.20)

[( op) Agin(p) Jp:sh Loy
Here,Ko(o =1, ..., s’) and €h t iam(h =1, ..., s”), where s’ + 2s”=r
are the roots of the characteristic equation
A(p) =0 (1.21)

The multiplicities of the roots are denoted by g, and g -, ; respect-
ively. A_(p) and A - ; (p) represent the polynomials

Ao(p) =2 A () = Al (1.22)
(P—%,)" T S
The prime on the summation sign in (1.20) indicates that the term
under the summation sign refers not to an isolated root, but to the whole
group of coincident roots of the characteristic equation (1.21). Using
the theorem of multiplication of representations, and in accordance with

(1.18) and (1.14), we have

L4}

14
D . T 4
“PA—)T)‘B) ﬁgm (¢t —7)X (1) dr (1.23)

—

0

Thus, in accordance with (1.17), (1.18) and (1.23) the solution of
the matrix differential equation (1.12) is
!

2(t) = N ()2 (0) -+ Sz\f ({ — 1) X (1) dr (1.24)
0
Since the functions X (t) for which p # o (1=1, ..., n) vanish
identically, it follows that the elements of the matrix z will be

t n

2 (8) = ) Ny (t) 2 (0) +§ 2 Ni(t—0 X, ()dr (G=1,..., ") (1.25)
k=1

0 =1

or, in accordance with (1.7)
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, (1.26)
zﬂﬁ::}%fhkuzkm SgiAivwwgz T)A—m()dr (G=1,...,n
Jio =
Defining the function W}l(t) b
Wi (1) = gévzvj%(t)ﬁﬁ- Gzpon (1.27)
the general solution of (1.10) can be written down in the form
2 (1) = ;é N () 24 (0) -+ > iv@yz(t-—-r)xl(r)dr G=1,....r (1.28)
=1 =15

Let us now consider the determination of the position of the system
in phase space in the case where the law obeyed by the external forces
z;(t) (I =1, ..., n) is known but the initial values of the phase co-
ordinates z,(0) (¢ =1, ..., r) are unknown.

We shall assume that only one of the phase coordinates z_ can be
measured and the origin for this coordinate is unknown.

Let us choose a new arbitrary origin and measure the deviations S(t;),
S(tz), .«vy S(t,., ;) of the phase coordinate z  from the new origin at
times t,, ..., t_ ;. Since

S(ti):S* 4z () (i=1,...,r41) (1.29)

where S* is the deviation of the new origin from the original origin,
and using the notation

S (fpgr) — S (8a) = Ly (m=1....7 (1.30)

we are led to the following relation between the changes in the phase
coordinate z_ and the results of measurement L#:

flles) — 2 (G) = Ly (=t (1.31)
This expression does not contain S*.

Substituting into (1.31) the values of : (t +1) and 2z (t ) as given
by (1.28), we obtain the following system of l1near algebralc equations
in terms of the initial values zk(O) of the phase coordinates

ji [Nk (1) — Nk (8)) 2 (0) = w=1....r  (1.32)
k=1
tut no

gxmpﬂhﬂﬁWM4\ \ Wa te — 1) 21 (1) de
0

=1 j

H
tyﬂs

l

1
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Having determined the initial values z,(0) from (1.32), we can use
(1.28) to find the values of zj(t) for any time t.

2. Non-steady-state systems. The equations of motion of a non-
steady-state controlled system

2 FuDy =20 G=1..., n) (2.1)
k=1

differ from (1.1) only in the fact that the coefficients of the poly-
nomials f.,(D) will no longer be constants but, instead, certain given
functions of time. The phase coordinates z, defined by (1.5) will now
satisfy the following system of differential equations with variable
coefficients

z; -+ 2 as () ze = X;(t) (=1,....m (2.2)
k=1

which can be derived similarly to (1.10).
The solution of (2.2) is of the form [4]

z;(t) = > N (t, 0) 2z (0) + pa
k=1 =

=1

Swﬂ GO @dt (G=1,...,7)(2.3)

Here
& By (1) =1,
Wit )= 2 N @ Ome (20000 (2.4)
i=1 ’
and N, (t, r) are the elements of the matrix N(¢, r) = 6(¢)6~1(r), where
6(t) 1s the fundamental matrix of the homogeneous matrix equation which
can be obtained from (2.2) with X}(t) =0(G =1, ..., r).

Similarly to (1.32), the initial values 2,(0) of the phase coordi-
nates can be calculated from the results of measurements described above
with the aid of the following set of linear algebraic equations:

r

. n lpt
Aél EVok (fpt15 0) — N (8, 0)] 2 (0) = L, — 121 x W (tygy, T) 21 (v) dr
- i}
n
+12 \ W (b, ¥) 1 (1) dv w=1,..., r) (2.5)

In order to determine the functions W ;(t,, r) where t, is a fixed
quantity, it is necessary to have a knowfedge of N;f(tl, r) which re-
present the elements of the matrix weight function N(t, r) for ¢t = ty.
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These elements are given by
N (ty, ©) = Ze (7) (2.6)

where Zg(r) are the integrals of

dZ, i’
d_nglakm)zk:o E=1,....r (2.7)
which assume the following values at t = ty:
Zi@) =1, Zx(t) =0 (k=1,....5—1,s4+1,...,1 (2.8)

Thus, in order to determine N'k(tu4»1» 0), N;k(t#, 0) and the func-
tions W_,(t , ), W, (t, r) (p=1, ..., r), it is necessary to
; sl p+ 1 Lp N : :
integrate (2.7) (r + 17 times, with t; in (2.8) given by t, = t,,

tr4-1'

Having found the initial values z,(0) of the phase coordinates, one
can, with the aid of (2.3), determine the position of the system in
phase space for any given instant of time t*. This involves a prelimi-
nary calculation of the weight functions N, (¢*, ) for j =1, ..., r,
which in turn involves the integration of %2.?) r times with t, and s
in (2.8) given by ty=t* and s=1, ..., r, respectively. The method
for the solution of the above problem with the aid of electronic com-
puters also follows from the above analysis.
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