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In designing optimal automatic control systems the control algorithm, de- 
termined by means of the methods of the theory of dynamic programming or 

in accordance with the maximum principle of Pontriagin, is realized on 

the basis of information on the instantaneous position of the controlled 

system in the phase space Il.2 1, 

In numerous cases it is difficult to obtain such information, since 
not all the phase coordinates of the system may be accessible to measure- 
ment. It is frequently impossible to measure some phase coordinates due 
to absence of information on the position of the orientation system 
relative to which the position of the controlled system is to be deter- 
mined. Thus, for instance, on a moving ship the direction of the real 
vertical of the location may be unknown relative to which the errors of 
the gyroscopic pendulum have to be determined or the direction of the 
geographical meridian relative to which the errors of the gyroscopic 
compass have to be determined. 

In view of this, it is of interest to seek indirect methods of deter- 
mination of the position of a controlled system in phase space. One of 
the possible methods is considered in this paper, applicable for linear 
stationary and nonstationary controlled systems. 

1. Steady- state systems. 'Ihe equations of motion of a steady- 
state controlled system can be written down in the following form: 

i: lj, CD) Yk = xj (0 (j = 1, . . . ( n) 

k=l 
(1.1) 
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In this expression, yk are the generalized coordinates of the system 
and z.(t) are the external forces applied to the system. The functions 

fj*(oJ are polynomials in D with constant coefficients and D = d/dt where 
t is the time. 

The set of equations (1.1) can be rewritten in the following form: 

bj, yl(mJ + b$J*(mJ + . . . + bj,zJ,‘Q = 

= q$ (yl(+-l), . . . ) y,, . . . , z&y,-l), . . . , y,) + xj (t) 
(1.2) 

(i = 1,. . . , n) 

Here the superscript (mk) (k = 1, . . . . n) represents the order of the 
highest derivative yk with respect to time which is found in (1.1). 'Ihe 
functions $. which enter into (1.2) 

L 
will he linear functions of their 

arguments. suming that the determinant 

A* = 1 bi, 1 (1.3) 

has a non-zero value, the set of equations (1.2) can be solved for the 
highest derivatives y*("k) with the result 

gj@"j) = Fj (yl(ml--l), . . . ,Yl,...,Y, (rnn-l),...,y)+ 
71 

(i = 1, . . . , n) (1.41 

where Fj are linear functions of their arguments and Bi. are algebraic 
complements of the elements bij in the determinant (1.3j. In order to 
transform the set of equations (1.43 into the Cauchy form, let us in- 
troduce the new variables 

where 

. 
3=y1, 52= y1,...,%m,=y~ 

cm,-1) 
,..., .&=y, cm,-1) 

(1.5) 

r = m, $ m2 + . . . $ m, (1.6) 

The new variables .zl, . . . . zr represent the phase coordinates of the 
system. Furthermore, let us denote the linear combinations of external 
forces which enter into the right-hand sides of (1.4) by X,.(t), so that 

J 

where 
xnj (t) = g 21 (t) + . . . + Bs zn (t) (Gj = o,, . . . , a,) (1.7) 

51 - 7% t o2 = m, + m2, . . ?, an = r (1.8) 

Equations (1.4) can now be rewritten in the form 
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. * 
- z, - zsj = 0 ) . . . ) z,,, - F, (q, z2, 1 . . , 2,) =:= x,, (t), . . . ) 

;,. - F, (q, z2, . . . , zr) - X& (t) 

Since the functions Fj(zl, z2, . . ., z are linear functions 
r 

arguments , it follows that Equations (1.9) can be rewritten in 

. 

Zj -1 _ i CZjJ$k ZZZ Sj (t) (i = 1,. . , r) 

/(:I 

We note that in (1.10) 

X,,(L)= 0 for p#q (E = 2, . . ..n) 

(1.9) 

of their 
the form 

( 1 . 10) 

(1.12) 

The set of scalar equations (1.10) is equivalent to the matrix equa- 
tion 

where 

The solution of (1.12) can be determined by operational methods. 
Assuming 

C(P)+z(t)y = (p) 3 x (4 (1.14) 

and bearing in mind the fact that pC;(p) - pz(O)+ i(t), we find in 
accordance with (1.12) that 

9 (P) 5 (Pf = PZ (0) + s ($4 (1.15) 

where 

cPM=Pfi+e (1.16) 

and E denotes the unit matrix. 

Denoting by Q(p) the, adjoint of the matrix gbfp) and by A(p) its de- 
terminant, we find from (1.15) that 

(1.17) 

Let us denote by N(t) the original for the following representation: 

q# + iv (t) (1.18) 

The function N(t) in an r x r matrix 
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N (t) = /I Njk (t) jl 

The elements of the matrix N(t) are of the form [ 3 1 
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(1.19) 

(1.20) 

Here,Ko(o = 1, . . . . S') and c/, f i@h(h = 1, . . . , ~“1, where s’ + 2s’!= r 
are the roots of the characteristic equation 

A (PI = 0 (1.21) 

‘Ihe multiplicities of the roots are denoted by go and q,‘+h respect- 
ively. A,(p) and A,*+, (p) represent the polynomials 

A,(p) = * @) Ass+(p) = --__ 
A (P) 

(P- qqO ’ (p - E,, - io,) ‘Is’+” 
(1.22) 

The prime on the sumnation sign in (1.20) indicates that the term 
under the summation sign refers not to an isolated root, but to the whole 
group of coincident roots of the characteristic equation (1.21). Using 
the theorem of multiplication of representations, and in accordance with 
(1.18) and (1.14), we have 

(1.23) 

‘Ibus, in accordance with (1. l?), (1.18) and (1.23) the solution of 
the matrix differential equation (1.1‘2) is 

2 (t) = N (t) 2 (0) $ \ A: (t - .t) x (t) dT (1.24) 
0 

Since the functions X,(t) for which p f 01 (1 = 1, . . . , n) vanish 
identically, it follows that the elements of the matrix z will be 

P t ” 

Zj (t) = 2 Njk (t) zk (0) $m \ )J Nisi (t - Z) Xoi (T) dT (j-1, . . . 1 r) (1.25) 
k=l (, i=1 

or, in accordance with (1.7) 
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Defining the function Wj I(t) by 

(1.27) 

the general solution of (1.10) can be written down in the form 

zj (t) = i llij, (t) Z/< (0) -I- i \IVj, (t - t) 1%1 (T) dr (j x= 1,. . , r) (1.28) 

k=l I-1 (, 

Let us now consider the determination of the position of the system 
in phase space in the case where the law obeyed by the external forces 
xl(t) (I = 1, . . . . n) is known but the initial values of the phase co- 
ordinates z,(O) (k = 1, . . . , F) are unknown. 

We shall assume that only one of the phase coordinates zs can be 
measured and the origin for this coordinate is unknown. 

Let us choose a new arbitrary origin and measure the deviations S(t,), 
S( t& . . . , S( t ,.+ 1) of the phase coordinate zs from the new origin at 

times t,, . . ., t,, 1. Since 

s (ti) = IS” -( Zs (ti) (i = 1, , r + 1) (1.29) 

where S* is the deviation of the new origin from the original origin, 
and using the notation 

8 (f,,+1) - s (L) = L, (CL = 1, , r) (1.30) 

we are led to the following relation between the changes in the phase 
coordinate zg and the results of measurement LP: 

2s (tk+l) - z<s (&) = L,, (p =: 1, , r) (1.31) 

lhis expression does not contain S. 

Substituting into (1.31) the values of zs( tp+ 1) and zs( tp> as given 

by (1.28), we obtain the following system of linear algebraic equations 
in terms of the initial values ~~(0) of the phase coordinates 

r 
(p=l,...,r) (1.32) 
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Having determined the initial values zc(O) from (1.32), we can use 
(1.28) to find the values of zj(t) for any time t. 

2. Non-steady-state systems. ‘Ihe equations of motion of a non- 
steady-state controlled system 

(i= 1, . . . ( n) (2.1) 

differ from (1.1) only in the fact that the coefficients of the poly- 

nomials fik(D) will no longer be constants but, instead, certa? given 
functions of time. 'Ihe phase coordinates 4j defined by (1.5) will now 
satisfy the following system of differential equations with variable 
coefficients 

ij + i ajk (t)zk = xj(t) 
k=l 

(j = 1, . . . , ‘) 

which can be derived similarly to (1.10). 

Ihe solution of (2.2) is of the form [4 1 

Here 

(2.2) 

1 , . . . ,r)(2.3) 

n 
B,i CT) 

IV,, (h .c) = 2] NjOi (6 z)m 
i=l,...,r 

i=1 ( l=l,...,n > 
(2.4) 

andNjk(t, r) are the elements of the matrix N(t, r) = O(t)B'(r), where 
s(t) IS the fundamental matrix of the homogeneous matrix equation which 
can be obtained from (2.2) with Xi(t) 5 0 (j = 1, . . ., r). 

Similarly to (1.32), the initial values ~~(0) of the phase coordi- 
nates can be calculated from the results of measurements described above 
with the aid of the following set of linear algebraic equations: 

irl\: ( 
k=l 

sk &+I 9 0) - Nsk (tp, o)] zk co) = L, - 5 ‘I+’ w,l (t,+,, 7) 21 (T) d’C _t 
I=1 ;, 

+ i: 

% 
(p = 1, . . , P) (2.5) 

In order to determine the functions I l(tc, r) where t6 is a fixed 
quantity, it is necessary to have a knowledge of NJtc, r) which re- 
present the elements of the matrix weight function N(t, r) for t = t5. 
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These elements are given by 

where 26(r) are the integrals of 

$& i] &&(lT)Zh.=O 
k=l 

(E = 1, . . ( r) 

which assume the following values at t = t5: 

(2.6) 

(2.7) 

2s (Q = 1, zk(kt==o (k=i ,..., s--l,sff ,..., I’) (2.8) 

‘Ihus, in order 
tions Wsl(tp+ I, r 

to determine N k(t,+ I, 01, Nak(t,, 0) and the fnnc- 
), Iv l($,, f) G = 1, . . ., r), 

$ 
it is necessary to 

integxate (2.7) (r * + 1 times, with tt in (2.8) given by tc = tl, . . I , 

t 
r+ 1’ 

Having found the initial values zk(O) of the phase coordinates, one 
can, with the aid of (2.3), determine the position of the system in 
phase space for any given instant of time t*. ‘&is involves a prelimi- 
nary calculation of the weight functions N.,(t*, t) for j = 1, . . . . r, 
which in turn involves the integration of f 2.7) F times with tl and s 

in (2.8) given by t5 = t*, and s = 1, . .., T, respectively. The method 
for the solution of the above problem with the aid of electronic com- 
puters also follows from the above analysis. 
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